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A POSTSCRIPT TO "DYNAMIC PROBLEMS IN THE THEORY OF THE FIRM" 

by 

Harvey M. Wagner 

Stanford University 

!• Introduction. 

In a previous paper [2]  we discussed the conibined use of traditional 

economic constructs and dynamic programming for solutions to several 

inter-temporal problems in the theory of the firm (that produces a tiingle 

commodity).  As a specific application of these techniques, we presented 

[3] a method for solving a dynamic version of the economic lot size model. 

The purpose of this postscript is (i) to demonstrate the algorithm suggested 

for the dyneanic economic lot size model is also applicable to situations in 

which the cost curves (which may differ from period to period) have non- 

2 
increasing marginal costs as a function of output t  e.g., due to quantity 

discounts, and (ii) to describe a forward algorithm for solving optimal pricing 

and output problems in which the cost curves have non-decreasing marginal costs 

as a function of output. 

The reader should recognize the parallel existing between "proauctlon" 
and "ordering inventory;" for ease of exposition, we frame our disjcussion 
in the language of "production, ^ 

Figuratively "increasing marginal returns to scale." 

J    Figuratively "decreasing marginal returns to  scale." 
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Throughout we assume  that each marginal revenue relation is a non-increasing 

function of the curresponding period sales^  and initial and ending inventory 

li- ar e zero. 

We consider finding a sequence of output gL(t) and prices, which in 

turn determine sales q (t) , that maximizes total profits over the entirety 

of periods t = 1,2,...,T    .    The period marginal revenue and cost functions 

are denoted by MR[q (t)] and MC[q (t)J , and the unit cost of carrying 

an item of inventory from period t to period t+1 is denoted by 1. . 

It  will be helpful to recall the previous system of diagrams [2,  p. 57]^ 

arraying each period's marginal revenue and cost curves, constructed such 

that the second period's curves are shifted downward by the amount 1  , the 

third period's by the amount 1 + 1   ,...,    and the T-th period's by the 

waount 1. + 1 +. ..+ i   . We permit the marginal functions to have 

horizontal segments (representing a constant anit cost or price over a 

range of values for output or a^' s),  and adopt the convention of connecting 

two "'adjacent" horizontal segments uy a vertical segment.  It should be 

noted that in the commonly considered, case of a fixed amount demanded S, 

for each period t (at some fixed price p ); the marginal revenue curve 

is represented as a step function 

In several cases only trivial alteration'; in the algorithms are needed 
tn remove these assumptions. 

In other words, i.f a marginal curve is In ^aj. 
in the step is drawn as well as the "flat." 

step function, the "rise" 

-•''mm^'e*i*s^------tmmmmmmmiiim 

.,. .„.■..* -- 
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MR[qs(t)J = 
(P      if    qg(t)<St 

0      otherwise. 

In the case of a capacity constraint on period production^  the marginal 

cost curve is depicted as rising vertically at this point. 

Ix.     The Case of Non-Increasing Marginal Costs. 

In [2,3J we discussed the model in which the marginal cost curve is 

horizontal    and Identical in all periods,  and non-negative setup costs are 

incurred if production takes place.    Hie suggested forward algorithm is 

briefly described as: 

At period    t* (starting with    t* = 1  ) compute the profits from 

producing in period    t**    (t** = l,2,...,t*) , and filling all    q (t)/ 
s 

t = t*"  ,  t** + l,...,t* , by production in period    t** Add to this 

figure the profits of using an optimal policy in periods    t ■ 1,2,.. .,t**-l 

8 
considered by themselves.       Select producing in the    t** that offers the max- 

imum total profits;  this yields an optimal policy for the first    t*   periods. 

Continue until    t* = T    . 

That this algorithm leads to an optimal solution is based on the funda- 

mental preposition [3, p. 91]: There exists an optimal program such that at 

any period    t    one need not both produce ard bring in inventory. 

C'.nsequently capacity constraints are ignored. 

7 
See [2, p.   6l] for the method of determining    q. (t)  .    In the commonly 

considered case of a fixed amount demanded for eacn period,    q. (t)    are of 
course pre-deterrained. 

B  
Since the algorithm starts at t* « 1 , these profit figures have been 

previously computed. 
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MR[q (t)]  = 
if   as(t)<3t 

0      otherwise. 

In the case of a capacity constraint on period production,  the marginal 

cost curve is depicted as rising vertically at this point. 

II.     The Case of Non-Increasing Marginal Costs. 

In  [2,3] we discussed the model in which the marginal  cost curve  Is 

horizontal    and identical in all periods, and non-negative setup costs a-re 

Incurred if production takes place.     The suggested forward algorithm, is 

triefly described as: 

At period    t* (starting with    t* = 1  ) compute the profits from 

producing in period    t*-*    (t** = l,2,...,t*)  ,  and filling all    q (t), 
s 

7 

t = t*-* ,  t** + l,...,t* , by production in period    t** Add to this 

figure the profits of using an optimal policy in periods    t ■ 1,2,... ,t*-*-l 

considered by themselves.      Select producing in the    t** that offers tine raax- 

iraum total profits;   this yields an optimal policy Tor the first    t*    periods. 

Continue until    t* ■ T    . 

That this algorithm leads to an optimal solution is based on the funda- 

mental proposition [3, p. ^\'\\ There exists an optimal program such tliax at 

any period    t    one need not both produce and tring in Inventory. 

r" 
Consequently capacity constraints are ignored. 

n 
See  [2,  p.   6l]  for the method of determining    q (t)   .     In the conmioitLy 

considered case of a fixed amount demanded for each period,     q (t)    are  of 
course pre-determined. 

Since the  ^ilgorithm starts at    t* = 1  ,  these profit figures have been 
previously computed. 

ai • •• ■    '«s ••*»•%■ 
"fP^MMHMCi 
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We assert that the same algorithm leads to an optimal solution If the 

marginal cost curves are non-increasing and not necessarily identical in 

all periods; as before, non-negative setup costs may be included-  The 

reason underlying the assertion is that the fundamental proposition 

continues to hold.  We sketch a proof: 

Suppose a trial solution indicates in period t* that both inventory 

is brought in and production takes place. Specifically, let \ PJ  denote 

the set of periods supplying inventory to period t* , Consider the current 

value of marginal cost for each t e [P| ,  and add to this number the carrying 

costs charged for bringing an additional unit of production from t to t* . 

Let MC' be the minimum value of these sums and t'  the associated period. 

If MC'  is less than the MC for the last unit produced in period t , we 

may revise the trial solution so as to increase production in period t' and 

eliminate it in period t .  If MC' is not less than the MC of the last 

unit produced in period, t , we may revise the trial solution so as to 

increase production in period t equal to the amount of incoming inventory 

and eliminate ti.e corresponding production in I P |  . Such alterations 

do not increase the total cost over that of the triad solution because of 

our hypothesis of decreasing marginal cost functions. 

We should recognize that our present assumption about marginal costs 

Is too weak to prove the Planning Horizon Theorem [3l^ which in part states 

that if it Is optimal to produce when periods 1 through t* are considered 

by themselves, then it Is sufficient to consider programs for all T periods 

such that production takes place in period t* .  In Table 1 we present an 

~ ;•—— 



•5- 

example in which the proposition is violated;   the optimal two-period program 

is to produce in period 2,  whereas the optimal three-period program is to 

produce only in period 1,     Consequently,   in the general  case of non-increasing 

marginal costs,   the addition of a new period    t*- + 1    may cause a ^ajor revision 

in an optimal plan for periods 1 through    t* 

Table 1 

Period 1 Period 2 Period 3 

Setup Cost 12 2 5 

Unit Carrying 
Charge 

0 0 0 

Unit Cost 8 9 10 

Selling Price 15 15 15 

Amount 
Demande^- 

0 3 20 

III.  The Case of Non-Decreasiag Marginal Costs. 

In [2] we described a recursive method for solving the class of 

problems in which marginal cost is non-decreasing. Essentially the 

technique Involved finding a first trial solution for all T periods; 

9 if the plan proved to be Infeaslble' , finding a second trial solution to 

a smaller number of periods; and so forth, until finding a feasible 

solution for periods t ■ 1,2,...,t* < T .  If t* < T , the method is 

repeated for periods t ■ t* + 1,...,T 

i e., at some period, cumulative sales exceeded cumulative production. 
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Here we note that the Ingenious method of S. Johnsor. [l] extends 

immediately to our problem to provide an alternative mode of attaci.. 

Specifically^ it is possible to construct an optimal sales and production 

pattern utilizing an algorithm starting at t = 1 , and.  successively 

adding the data for each following period. 

We define a "cascade function," to be superimposed on r/oe  ov^vx of 

diagrams arraying each period's marginal curves, as a step function having 

a single horizontal step for each period and such that the heights of the 

steps are ^on-increasing over time. Figure 1 shows an example of a cascade 

function for a three-period model. 

She algorithm for coiisLructing an optimal solution proceeds as follows: 

Step 1.  In period 1 define the height of the step as the value of the 

oarglaal cost curve at the output for which period 1 marginal cost ani 

revenur; curves Intersect. If the intersection is at a vertical segment of 

the M^' carve, then the height is defined as the value of MC on the immediate 

10 
left of the intersection point."'' 

Ihe provisional values for q. (l) and ^(l) are determined a-5 the 

output at the intersection of the MR and MC curves. If "".^ ...texscuw^on 

is nor-unique, then the largest saleable output on the locus of the inter- 

section is selected. 

Stan 2.  The height of the cascade step for pericl 2  5s provisionally 

set at the height of the step for period 1,  The trial value for q (2) 

is  the smallest output such that VSß[a  (2)] *  the height of the trial 

10 
It may happen that at q(l)=q(l)=0, the MC curve lies above the 

MR cxu-ve, m which case it is never profitable to sell any Item in period 1; 
the leight of the cascade step is then defined as the value of the MC ^urve 
on the limnediate right of a (l) = 0 



to 

TÄ. 
O 

»M«»»* 



-8- 

I- 

step, and for q (2) is the largest sales figure such that MR[q (2)] ■ 
" s 

the height of the trial step. 

Case (i)o  If <L(2) = q,(2) , no alteration is made in the 

provisional values. 

Case (ii)u  If q„(2) > q (2) , then the height of the step for 

period 2  must be lowered until equality obtains between the amount sold 

and produced In period 2. In lowering the step, if a horizontal section 

of the MK curve is reached, the sales figure should be increased as much 

as possible toward meeting the equality condition.  If a horizontal section 

of the MC curve is reached, output should be curtailed as much as poasible 

toward meeting the equality condition. We adopt the rule that if hori- 

zontal sections in the MR and MC functions are met simultaneously, the 

increase in sales takes precedence over the decrease in output. 

Case (ill).  If 0^(2) < q (2) , then in this ins-oance cumulative 

output over the two periods is not sufficient to meet cumulative demand. 

If possible Increase output in period 2  at the same marginal cost, with 

a view toward meeting the condition that cumulative output equals cumu- 

lative sales. Should the condition remain unsatisfied, if possible 

Increase output in period 1 at the same marginal cost. Should the 

condition then remain unsatisfied, if possible decrease sales in period 2 

at a value of marginal revenue equal to the provisional height of the step. 

Should the condition continue to be unsatisfied, if possible decrease sales 

in period 1 at a value of MffgU."»- .. rvenue equal to the provisional height 

of the step.  Should the condition still remain unsatisfied, then raise 

the height of the step, maintaining the cascade property by raising, the 

^ 
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height of the step for period 1 and altering,, mutatis mutandis., 

(L.C't), <i (t), t = 1,2,    until equality obtains between cumulative sales 

and production. 

In raising the height of the step, if horizontal segments in the 

MR aid MC curves are encountered, an increase in output takes precedence 

(starting at the latest period being considered) over a decrease in sales. 

Step t*. The height of the cascade step for period t* is provision- 

ally set at the height of the step for period t* - 1. As in Step 2, trial 

values for a (t*) and    ^(t*) are determined. 

Case (i). If ^(t*) = q (t*-) ,  then no alteration is made in 

the provisional values. 

Case (ii)  If qU*) > q (t*) , then the alteration given in 

Step 2,  Case (ii), is applied here. 

Case (iii). If %.i^*)  < 1 (t*) > then  if possible increase output 

in period t* at the same marginal cost, with a view toward meeting the 

condition that cumulative output (t ■ 1,2,...,t*)    equals cumulative 

sales. Should the condition remain unsatisfied, if possible increase out- 

put in periods t* - 1, t* - 2,..,,  at tile same marginal cost.   Shouid 

the condition continue to be unsatisfied, if possible decrease sales in 

period t* - 1, t* - 2,.. , at a value of marginal revenue equai to the 

provisional height of the step. Finally, should the condition still 

remain uncntisfied, then raise the height of the step, maintaining the 

cascade property by raising the height of the step for period t*-l and any 

■i -* 

I.e., for all immediately preceding periods having the cascade function 
at the same height as the current provisional value. 

,  ;::., ■...-:•■■„ ,-. ■     ■■   -        ■ 
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previous periods as they become eligible, and altering, mutatis mutandis, 

q (t), q (t), t = l,2,...,t* , until equality obtains between cumulative 

sales and production. As in Step 2, Case (iii), increasing output takes 

precedence over decreasing sales whenever such simultaneous alternatives 

present themselves« 

In summary, the algorithm calls for the successive adding of new 

period demand and supply relationships, and c-ffecting revisions in a 

fashion such that, at any given period, planned sales never increase and 

planned production never decreases. The construction consequently main- 

tains feasibility, for the adding of a new period either leaves the 

previous periods' plans unchanged and the new period is considered by 

itself, or causes a revision of the previous plans such that cumulative 

demand (at any period) decreases and cumulative product!jn Increases. 

The cascade function ensures the marginal equalities necessary for a 

constrained local optimal feasible solution, and tne assumptions that 

MR Is a no-i-tncreaslng function and MU a non-decreasing function guarantee 

that any discovered local optimum is also a global optimum. 
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